A Regret Minimization Approach in Product Portfolio Management with respect to Customers’ Price-sensitivity

Authors

  • Azadeh Arjmand Department of Industrial Engineering, College of Engineering, Alzahra University, Tehran, Iran.
  • Maryam Esmaeili Department of Industrial Engineering, College of Engineering, Alzahra University, Tehran, Iran.
Abstract:

In an uncertain and competitive environment, product portfolio management (PPM) becomes more challenging for manufacturers to decide what to make and establish the most beneficial product portfolio. In this paper, a novel approach in PPM is proposed in which the environment uncertainty, competitors’ behavior and customer’s satisfaction are simultaneously considered as the most important criteria in achieving a successful business plan. In terms of uncertainty, the competitors’ product portfolios are assumed as different scenarios with discrete occurrence probabilities. In order to consider various customer preferences, three different market segments are assumed in which the sensitivity of customers towards the products price are considered as high, medium and low and modeled by means of a modified utility functions. The best product portfolio with minimum risk of loss and maximum customer satisfaction is then established by means of a novel regret minimization index. The proposed index aims at finding the best product portfolio which minimizes the total possible loss and regret of the manufacturer, with respect to the other competitors of the market. To better illustrate the practicality of the approach, a numerical example is presented. The results show that the selected products in the suggested portfolio have the highest utility value in all market segments and also they are expected to achieve the highest expected payoff in each possible marketing scenario.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Robustness in portfolio optimization based on minimax regret approach

Portfolio optimization is one of the most important issues for effective and economic investment. There is plenty of research in the literature addressing this issue. Most of these pieces of research attempt to make the Markowitz’s primary portfolio selection model more realistic or seek to solve the model for obtaining fairly optimum portfolios. An efficient frontier in the ...

full text

Optimal Regret Minimization in Posted-Price Auctions with Strategic Buyers

We study revenue optimization learning algorithms for posted-price auctions with strategic buyers. We analyze a very broad family of monotone regret minimization algorithms for this problem, which includes the previously best known algorithm, and show that no algorithm in that family admits a strategic regret more favorable than Ω( √ T ). We then introduce a new algorithm that achieves a strate...

full text

A NEW APPROACH TO THE SOLUTION OF SENSITIVITY MINIMIZATION IN LINEAR STATE FEEDBACK CONTROL

In this paper, it is shown that by exploiting the explicit parametric state feedback solution, it is feasible to obtain the ultimate solution to minimum sensitivity problem. A numerical algorithm for construction of a robust state feedback in eigenvalue assignment problem for a controllable linear system is presented. By using a generalized parametric vector companion form, the problem of eigen...

full text

Random Walk Approach to Regret Minimization

We propose a computationally efficient random walk on a convex body which rapidly mixes to a time-varying Gibbs distribution. In the setting of online convex optimization and repeated games, the algorithm yields low regret and presents a novel efficient method for implementing mixture forecasting strategies.

full text

The convex optimization approach to regret minimization

A well studied and general setting for prediction and decision making is regret minimization in games. Recently the design of algorithms in this setting has been influenced by tools from convex optimization. In this chapter we describe the recent framework of online convex optimization which naturally merges optimization and regret minimization. We describe the basic algorithms and tools at the...

full text

a comparison of teachers and supervisors, with respect to teacher efficacy and reflection

supervisors play an undeniable role in training teachers, before starting their professional experience by preparing them, at the initial years of their teaching by checking their work within the proper framework, and later on during their teaching by assessing their progress. but surprisingly, exploring their attributes, professional demands, and qualifications has remained a neglected theme i...

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 12  issue 1

pages  93- 102

publication date 2019-03-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023